

MICROWAVE INTEGRATED RETRIEVAL SYSTEM (MIRS): Hydrological Products and Applications

Chris Grassotti
CICS-MD and NOAA/NESDIS/STAR

MiRS Team: S. Liu, R. Honeyager, Y-K. Lee, Q. Liu Help from: G. Chirokova, P. Meyers, H. Meng

> christopher.grassotti@noaa.gov 29 August 2018

Algorithm Overview

- MW Only, Variational Approach: Find the "most likely" atm/sfc state that: (1) best matches the satellite measurements, and (2) is still close to an a priori estimate of the atm/sfc conditions.
- "Enterprise" Algorithm: Same core software runs on all satellites/sensors; facilitates science improvements and extension to new sensors.
- Initial capability delivered in 2007. Running v11.2 since Jan 2017 on SNPP/ATMS, N18, N19, MetopA, MetopB, F17, F18, GPM/GMI, Megha-Tropiques/SAPHIR. (eventually MetopC...)
- Delivery of v11.3 (extended to NOAA-20/ATMS) to operations on 8 June.
- External Users/Applications: TC Analysis/Forecasting at NHC, Blended Total/Layer PW Animations at NHC and WPC (CSU/CIRA, U. Wisconsin/CIMSS), CSPP Direct Broadcast (U. Wisconsin), NFLUX model (NRL, Stennis), Global blended precipitation analysis at NOAA/CPC (CMORPH),...
- All N20 results here are generated with MiRS v11.3 (offline processing in STAR), and TDR data generated in IDPS (Block 2 processing).

Examples of MiRS Products with Hydrology Applications

MiRS RR Algorithm

- 1DVAR retrieves pRWP and pGWP on 100 p layers
- Postprocessing:
 - Vertically integrate to obtain CLW, RWP GWP
 - O Apply equation previously trained on mesoscale model simulations:

RR validation: N20 and SNPP vs. Stage IV 5-Day CONUS Averages (Dec 2017 – Jul 2018)

RR validation: N20 and SNPP vs. Stage IV 5-Day CONUS Averages (Dec 2017 – Jul 2018)

Hurricane Harvey: MiRS ATMS Rain Rate and TPW, 24 August 2017

Hurricane Harvey: MiRS ATMS and ECMWF Temperature Anomaly Cross-sections, 24 August 2017

Lower level anomaly is artifact of rain contamination (see last year's presentation)

Hurricane Harvey: Comparison with MRMS

Hurricane Harvey: 27 August, Day of Extreme Flooding

ATMS & MRMS Precipitation Rate @ 20170827-1018UTC

- MRMS: Operational Blended Radar-Gauge Analysis, 1 km resolution
- Both satellite and MRMS detected rainfall rates > 25 mm/h

Courtesy of Pat Meyers (CICS-MD)

Hurricane Irma: Westward progression and Intensification

Northeastern Snowstorm: 14 March 2017

- High rain rates over ocean and southern areas (Caribbean moisture plume)
- Missing RR over snow covered land (algorithm does not retrieve precipitation when snow cover detected)
- Complementarity with SFR algorithm (retrieves over land only); see Huan Meng's presentation next.

Application: Blended Layer Precipitable Water Combines MiRS WV from up to 7 Polar Satellites for Rapid Refresh and Advection (NWP-based winds)

To be implemented at NHC and WPC

Courtesy of John Forsythe

Application Using MiRS Data: Moisture In-Flux Storm Tool (MIST) (under development)

Dry-air intrusions:

- adversely affect TCs: inhibit convection, enhance cold downdrafts, contribute to storm asymmetry
- detected with TPW, LPW, WV imagery which do not provide quantitative information and do not always reflect moisture changes at mid-levels

MIST:

- detects and quantifies dry-air intrusions
- potential predictor for statistical TC intensity forecast models (SHIPS, LGEM, RII)

MIST shows moisture flux at R = 220 km from the storm center as a function of azimuth

Galina Chirokova (CIRA), Mark DeMaria (NOAA/NWS/NHC), John Knaff (NOAA/NESDIS)

Two Operational ATMS Better Than One: MiRS Rain Rate for Hurricane Hector

Summary

- MiRS products with hydrology applications: RR, RWP, GWP, CLW, TPW, Snowfall Rate, Sea Ice Concentration, Snow Water Equivalent
- Some products are used in downstream applications, e.g. Blended Layer and Total PW, TC Intensity
- Continued N20 validation (RR, TPW, SIC, SWE) indicates **extremely good agreement** with SNPP, and performance against external references very similar to SNPP
- Validation maturity status: Provisional maturity
- MiRS v11.3: Extension to N20 ATMS processing, delivered to OSPO/NDE on 8 June;
 operations possibly in September
- Path Forward
 - Continued validation, e.g. rain rate, CLW, cryosphere, T, WV,...
 - Additional DAP delivery in late 2018 (updated radiometric bias corrections, possible science improvements)
 - Stakeholders/user needs; continue collaboration with applications developers and users...
- MiRS data available at CLASS, and STAR ftp (S-NPP/ATMS, GPM/GMI, NOAA-20/ATMS)
- Software package available for download https://www.star.nesdis.noaa.gov/mirs

Extra Slides

Outline

- Algorithm Overview
- Rain rate validation
 - N20 and SNPP ATMS comparisons with Stage IV
- Case Studies
 - Hurricane Harvey (August 2017)
 - Hurricanes Irma and Jose (Sept 2017)
 - Northeastern Snowstorm (14 March 2017)
 - Advantage of 2 operational ATMS for TC monitoring
- Summary and Path Forward

Hurricane Harvey: MiRS ATMS Rain Rate and TPW, 25 August 2017

MiRS ATMS Rain Rate and TPW: 27 August 2017

